Boosting association rule mining in large datasets via Gibbs sampling
نویسندگان
چکیده
منابع مشابه
Toward boosting distributed association rule mining by data de-clustering
Existing parallel algorithms for association rule mining have a large inter-site communication cost or require a large amount of space to maintain the local support counts of a large number of candidate sets. This study proposes a de-clustering approach for distributed architectures, which eliminates the inter-site communication cost, for most of the influential association rule mining algorith...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملCollaborative Recommendation via Adaptive Association Rule Mining
Collaborative recommender systems allow personalization for e-commerce by exploiting similarities and dissimilarities among users' preferences. We investigate the use of association rule mining as an underlying technology for collaborative recommender systems. Association rules have been used with success in other domains. However, most currently existing association rule mining algorithms were...
متن کاملRare Association Rule Mining via Transaction Clustering
Rare association rule mining has received a great deal of attention in the recent past. In this research, we use transaction clustering as a pre-processing mechanism to generate rare association rules. The basic concept underlying transaction clustering stems from the concept of large items as defined by traditional association rule mining algorithms. We make use of an approach proposed by Koh ...
متن کاملVariable Selection Via Gibbs Sampling
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2016
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1604553113